
  

Compchem weekly seminar 
23/01/2018

Gromacs benchmarks



  

Gromacs 2019 Compilation

● Many different possibilities
– icc vs gcc compiler
– Build own FFTW or MKL
– SIMD instructions on new CPUs
– MPI or not
– Infiniband support (or lack thereof)
– GPU support or not, CUDA and drivers versions…



  

Executables

Executable Uses Compiler options

gmx Serial run, preparation, analysis gcc, build own fftw

mdrun_mpi MD on “normal” icc, mkl, avx_256

mdrun_avx2 MD on “cluster-e5v4” icc, mkl, avx2_256

mdrun_gpu MD on “gpu” (K20, not yet) icc, mkl, avx_256, CUDA 10

mdrun_gpu_avx2 MD on “gpu-umr850” (K40)
MD on “gpu-umr1248-gtx1080”

icc, mkl, avx2_256, CUDA 10



  

Benchmarks

● System
– 128 POPC, Slipids, NPT, free simulations, 35000 atoms, 200 ps

● Parallelization options
– MPI tasks

● OpenMP threads
– CPU cores

– En pratique tasks * threads = ncores
– Can be run on several nodes
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Open
MP

Thread 
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CPU : tasks vs threads

● Use as many tasks as cores
– #SBATCH --cpus-per-task=1
– #SBATCH --threads-per-core=1 
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CPU performance

● Almost linear scaling up to 
what we can use

● Newer CPUs (e5v4) are 
slightly better
– especially if they benefit 

from latest SIMD 
instructions
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CPU performance

● Almost linear scaling up to 
what we can use

● Newer CPUs (e5v4) are 
slightly better
– especially if they benefit from 

latest SIMD instructions
● Performance degradation 

over multiple nodes with 
“normal”
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CPU Multiple nodes

● Again, better use as few 
nodes as possible, even if 
infiniband limits the penalty

● The tests were performed on 
empty nodes, expect higher 
performance degradation on 
100% cluster use
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GPU parameters

● GPU itself (1080, K20, K40…)
● Cores : tasks vs threads
● Cores per GPU
● What is done by the GPU?

– Bonded, non-bonded, PME…
● Number of GPUs
● Simultaneous jobs on the node



  

Which GPU ?

● Tested only with amber 
yet

● 1080ti are 4x faster 
than K40

K40 1080TI
0

20

40

60

80

100

120

140

160

Gromacs

Amber



  

GPU : tasks vs threads

● Use as many threads as 
possible

● 1 GPU can benefit from more 
cores
– But other 7 GPUs are idle…

● On our nodes, ideal is 1 task 
of 2 threads per GPU
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What is done by the GPU?

● 1 GPU (1080), 2 threads

non-
bonded

PME bonded ns/day

CPU CPU CPU 5

GPU CPU CPU 36

GPU GPU CPU 61

GPU GPU GPU 85



  

Number of GPUs per job

Cores GPU PME ns/day ns/day/
GPU

2 1 GPU 85 85

4 2 CPU 67 33.5

4 2 GPU 81 40.5

8 4 GPU 144 36

16 8 CPU 119 15

16 8 GPU 210 26

● Always do PME on GPU
● To do PME on GPUs using multiple 

GPUs, you have to dedicate one 
GPU to it.

● No benefit of using 2 GPUs 
because one is waiting for the other

● Benefits start from 4 GPU
● Most efficient use is 1 GPU



  

Simultaneous jobs

● All previous numbers are jobs 
running on empty nodes

● 16% performance decrease 
when node is full or half-full
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Gromacs versions

● Gromacs 2019 is :
– 13% better on “normal”
– 32% better on “e5v4”
– 455% better on GPU (1080)
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Gromacs 2019 VS Amber

● CPU : about the same
● 1 GPU : Amber wins (twice 

as fast)

● Not exactly identical 
systems and parameters

● Amber performance 
scaled to number of atoms
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Influence of cutoff

● Slipids uses 1.4 nm cutoffs
● Their latest paper suggests to 

try 1.0 nm

● 88% faster on e5v3
● 70% faster on e5v4
● 10% faster on GPU
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System size

● 241k atoms: transporter with amberff and shorter cutoff
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Summary

● If you use Gromacs, switch to 2019
– I will provide optimized sample batch files in my $HOME

● Gromacs is now much faster on GPU
– 1 1080TI is 2.5x faster than 20 CPU cores
– Amber is still 2x faster than Gromacs
– Gromacs team is working on it

● Our systems scale relatively well with number of cores or atoms
– You can choose to go faster on 1 job or do more jobs
– Try reducing cutoff and evaluate the effects

● Which new nodes to buy? It all depends on cost


