

Compchem weekly seminar
23/01/2018

Gromacs benchmarks

Gromacs 2019 Compilation

● Many different possibilities
– icc vs gcc compiler
– Build own FFTW or MKL
– SIMD instructions on new CPUs
– MPI or not
– Infiniband support (or lack thereof)
– GPU support or not, CUDA and drivers versions…

Executables

Executable Uses Compiler options

gmx Serial run, preparation, analysis gcc, build own fftw

mdrun_mpi MD on “normal” icc, mkl, avx_256

mdrun_avx2 MD on “cluster-e5v4” icc, mkl, avx2_256

mdrun_gpu MD on “gpu” (K20, not yet) icc, mkl, avx_256, CUDA 10

mdrun_gpu_avx2 MD on “gpu-umr850” (K40)
MD on “gpu-umr1248-gtx1080”

icc, mkl, avx2_256, CUDA 10

Benchmarks

● System
– 128 POPC, Slipids, NPT, free simulations, 35000 atoms, 200 ps

● Parallelization options
– MPI tasks

● OpenMP threads
– CPU cores

– En pratique tasks * threads = ncores
– Can be run on several nodes

MPI Task 1 Task 2

Open
MP

Thread
1-1

Thread
1-2

Thread
2-1

Thread
2-2

Core 1 2 3 4 5 6 7 8

CPU : tasks vs threads

● Use as many tasks as cores
– #SBATCH --cpus-per-task=1
– #SBATCH --threads-per-core=1

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Threads vs tasks on CPU

16 cores

64 cores

threads per task

n
s/

d
a

y

CPU performance

● Almost linear scaling up to
what we can use

● Newer CPUs (e5v4) are
slightly better
– especially if they benefit

from latest SIMD
instructions

0 20 40 60 80 100 120
0

20

40

60

80

100

120

ns/day

Normal

e5v4

e5v1 (threads)

e5v4 avx2

Cores
n

s/
d

a
y

CPU performance

● Almost linear scaling up to
what we can use

● Newer CPUs (e5v4) are
slightly better
– especially if they benefit from

latest SIMD instructions
● Performance degradation

over multiple nodes with
“normal”

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5 ns/day/core

Normal

e5v4 avx2

e5v1 (threads)

e5v4

Cores

n
s/

d
a

y/
co

re

CPU Multiple nodes

● Again, better use as few
nodes as possible, even if
infiniband limits the penalty

● The tests were performed on
empty nodes, expect higher
performance degradation on
100% cluster use

0 1 2 3 4 5
0

5

10

15

20

25

30

Influence of node number

16 cores

nodes

n
s/

d
a

y

GPU parameters

● GPU itself (1080, K20, K40…)
● Cores : tasks vs threads
● Cores per GPU
● What is done by the GPU?

– Bonded, non-bonded, PME…
● Number of GPUs
● Simultaneous jobs on the node

Which GPU ?

● Tested only with amber
yet

● 1080ti are 4x faster
than K40

K40 1080TI
0

20

40

60

80

100

120

140

160

Gromacs

Amber

GPU : tasks vs threads

● Use as many threads as
possible

● 1 GPU can benefit from more
cores
– But other 7 GPUs are idle…

● On our nodes, ideal is 1 task
of 2 threads per GPU

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

GPU tasks vs threads

1 gpu, 2 cores

1 gpu, 4 cores

1 gpu, 8 cores

1 gpu, 16 cores

threads per task
n

s/
d

a
y

What is done by the GPU?

● 1 GPU (1080), 2 threads

non-
bonded

PME bonded ns/day

CPU CPU CPU 5

GPU CPU CPU 36

GPU GPU CPU 61

GPU GPU GPU 85

Number of GPUs per job

Cores GPU PME ns/day ns/day/
GPU

2 1 GPU 85 85

4 2 CPU 67 33.5

4 2 GPU 81 40.5

8 4 GPU 144 36

16 8 CPU 119 15

16 8 GPU 210 26

● Always do PME on GPU
● To do PME on GPUs using multiple

GPUs, you have to dedicate one
GPU to it.

● No benefit of using 2 GPUs
because one is waiting for the other

● Benefits start from 4 GPU
● Most efficient use is 1 GPU

Simultaneous jobs

● All previous numbers are jobs
running on empty nodes

● 16% performance decrease
when node is full or half-full

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Simultaneous jobs of 2 threads, 1 GPU

Jobs

n
s/

d
a

y
fo

r
e

a
ch

 jo
b

Gromacs versions

● Gromacs 2019 is :
– 13% better on “normal”
– 32% better on “e5v4”
– 455% better on GPU (1080)

16 cores e5v3 20 cores e5v4 1 1080, node full
0

10

20

30

40

50

60

70

80

Gromacs versions

Gromacs 5.0.4

Gromacs 5.1.4

Gromacs 2019

n
s/

d
a

y

Gromacs 2019 VS Amber

● CPU : about the same
● 1 GPU : Amber wins (twice

as fast)

● Not exactly identical
systems and parameters

● Amber performance
scaled to number of atoms

16 cores e5v3 20 cores e5v4 1 1080, node full
0

20

40

60

80

100

120

140

160

Gromacs

Amber

n
s/

d
a

y,
 e

q
u

iv
a

le
n

t 3
5

k
a

to
m

s

Influence of cutoff

● Slipids uses 1.4 nm cutoffs
● Their latest paper suggests to

try 1.0 nm

● 88% faster on e5v3
● 70% faster on e5v4
● 10% faster on GPU

16 cores e5v3 20 cores e5v4 1 1080
0

10

20

30

40

50

60

70

80

90

100

Influence of cutoff

1.4 nm

1.0 nm

n
s/

d
a

y

System size

● 241k atoms: transporter with amberff and shorter cutoff

16 cores e5v3 20 cores e5v4 1 1080
0

10

20

30

40

50

60

70

80

90

24.26

34.05

85.17

5.9 7.02
13.18

Raw performance

35k atoms

241k atoms

n
s/

d
a

y

16 cores e5v3 20 cores e5v4 1 1080
0

50

100

150

200

250

300

350

Performance per 10k atoms

35k atoms

241k atoms

n
s/

d
a

y/
1

0
k

a
to

m
s

Summary

● If you use Gromacs, switch to 2019
– I will provide optimized sample batch files in my $HOME

● Gromacs is now much faster on GPU
– 1 1080TI is 2.5x faster than 20 CPU cores
– Amber is still 2x faster than Gromacs
– Gromacs team is working on it

● Our systems scale relatively well with number of cores or atoms
– You can choose to go faster on 1 job or do more jobs
– Try reducing cutoff and evaluate the effects

● Which new nodes to buy? It all depends on cost

