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Abstract

The InfiniBand Architecture (IBA) is a new industry-stan-
dard architecture for server I/O and inter-server communi-
cation. It was developed by the InfiniBandSM Trade
Association (IBTA) to provide the levels of reliability,
availability, performance, and scalability necessary for
present and future server systems, levels significantly better
than can be achieved with bus-oriented I/O structures. This
chapter provides a description of the reason IBA was devel-
oped, an brief overview of the architecture as a whole, more
detailed information about several selected IBA topics, and
discussion of industry implications of this architecture.

42.1 The IBTA and the Specification

The IBTA is a group of 180 or more companies founded in
August 1999 to develop IBA. Membership is also open to
Universities, research laboratories, and others. The IBTA is
lead by a Steering Committee whose members come from
Dell, Compaq, HP, IBM, Intel, Microsoft, and Sun, co-
chaired by IBM and Intel. Sponsor companies are 3Com,
Cisco Systems, Fujitsu-Siemens, Hitachi, Adaptec, Lucent
Technologies, NEC, and Nortel Networks.

Approximately 100 individuals from the IBTA member
companies worked for approximately 14 months to define
and describe IBA, and the result is both deep and broad: It
is deep in the sense that IBA extends from physical inter-
connects and form factors up to high-level management
functions; and it is broad in the sense that IBA provides a
very wide range of function from simple unreliable com-
munication to partitioning, with many options. The result-
ing specification [1, 2] is large—approximately 1500 pages
long. Clearly this article can only introduce the concepts

and features involved; the reader is referred to the specifica-
tion itself for details.

The size of the specification is also partly the result of
two goals of the development process: First, the result had
to scale down to cost-effective small server systems as well
as scaling up to large, highly robust, enterprise-class facili-
ties. Second, it should provide as much scope as possible
for new invention and vendor differentiation.

The first item, scale down and up, resulted in a large
number of options and a great deal of parameterization.
There are multiple link widths, multiple MTU (minimum
transfer unit) sizes, very small architectural minima on all
properties, and major features that are optional. To simplify
software support, profiles have been defined. While referred
to simply as “Profile A” and “Profile B,” the intent is that
one defines features and sizes that software can expect on
smaller systems; and the other similarly defines large sys-
tems.

The second item, scope for new invention, produced
some seemingly odd results. For example, while connectors
for copper interconnect are fully defined (as required for
interoperability), cable length and wire gauge is not.
Instead, there is an attenuation budget defined (15dB), and
any cable implementation meeting that budget is allowed.
(Initially this budget is expected to allow cables of 10m to
17m, depending on cost and implementation.) In a similar
vein, the specification of how host software can control
IBA contains no APIs, defined registers, etc. Instead it is
specified as a collection of verbs—abstract representations
of the function that must be present, but may be imple-
mented with any combination and organization of hard-
ware, firmware, and software. This is not expected to cause
portability problems because application programs will
likely never see IBA directly, instead using standard APIs
and OS-defined interfaces for I/O and communication.

42.2 Reasons for the InfiniBand Architecture

The primary reason why development of IBA was initiated
is that processing power is substantially outstripping the
capabilities of industry-standard I/O systems using busses.
617
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While busses have the major advantage of simplicity, and
have served the industry well up to this point, bus-based I/
O systems do not use their underlying electrical technology
well to provide data transfer (bandwidth) out of a system to
devices. There are several reasons for this.

First, buses are inherently shared, requiring arbitration
protocols on each use, a “tax” that increases with the num-
ber of devices or hosts. As the clock speed of a bus
increases, and its long burst bandwidth increases, the nega-
tive effects of arbitration overhead are magnified.

A second reason why busses are inefficient users of elec-
trical technology actually is really a function of how they
are used. Since common industry standard busses are mem-
ory-mapped, short sequences, such as command transmis-
sion and the reading status, are performed using processor
load and store operations. For store operations, this is not a
major problem since modern processors allowing out-of-
order completion can overlap substantial additional pro-
cessing with store processing. Unfortunately, most devices
require load instructions for operations like reading status
and retrieving small amounts of data. Loads, unlike stores,
usually cannot proceed very far without making the proces-
sor stop to wait for the requested data. This can be a very
serious efficiency problem. Internal analysis by the author
of a competitor’s system executing a commercial bench-
mark requiring many fairly small I/O operations—the TPC-
C benchmark—indicated that nearly 30% of processor exe-
cution time was spent waiting on I/O loads in this fashion.

In addition to the above problems, busses also do not
provide the level of reliability and availability now being
required of server systems. A single device failure can
inhibit the correct operation of the bus itself, causing all the
devices on the bus to become unavailable, including those
attached by bridges. Finding out which device is at fault, or
whether there is a failure of the bus itself, often becomes an
aggravating and time-consuming exhaustive search.

Several external connection techniques, such as Fibre
Channel, have been used to overcome come of these diffi-
culties. However, they must still enter the processing com-
plex through an industry-standard bus, making it
impossible to avoid the bottlenecks and low availability
characteristic of standard I/O busses.

These difficulties appear at a time when there are trends
to use ever more I/O bandwidth and function. For example:
Increasing use of data mining techniques requires scans of
amounts of data now regularly exceeding terabytes; closer
coupling between web front ends, intermediate transaction-
oriented applications, and back-end data mining facilities
are increasingly desired; and the expected function is
increasing from simple pages of data, through streaming
audio to streaming video, with vastly increased data trans-
fer requirements.

While the above are key reasons why the development
of IBA was initiated, the result is much more than just a
replacement for busses. Indeed, the author’s opinion is that
IBA has significant long-term implications for the way
large systems will be structured in the future. These are dis-
cussed under <Industry Implications> later in this chapter.

42.3 An InfiniBand Architecture Overview

These problems mentioned above have been solved before
by individual server vendors in a number of ways. How-
ever, all such solutions have been wholly or partially pro-
prietary, thereby incurring significant costs. IBA is, instead,
an industry-standard architecture, which should achieve
significant volumes and hence much lower costs.

It avoids the problems with busses discussed above
through two basic characteristics:

• point-to-point connections: All data transfer is point-
to-point, not bussed. This avoids arbitration issues,
provides fault isolation, and allows scaling to large
size by the use of switched networks.

• channel (message) semantics: commands and data are
transferred between hosts and devices not as memory
operations but as messages.

In other words, IBA explicitly treats I/O as communica-
tion. Its purpose is then to provide very low-overhead, high
bandwidth communication between devices and hosts, as
well as among hosts themselves. In doing so, it makes
explicit and deliberate use of many concepts originating in
the realm of networking.

Like any modern communication system, IBA is a stack
divided into physical, link, network, and transport layers.
The discussion which follows will overview the main ele-
ments of IBA in approximately that order, followed by
management. Unfortunately, no linear ordering of a
description based on transport layers is ideal, since there
are features at higher levels of the communication stack
control and use features implemented at lower levels, and
there are features at the lower levels which cannot be justi-
fied without describing the higher-level facilities they sup-
port.

Therefore, the rest of this chapter will consist first of a
general overview of IBA, and then more detailed discussion
of several selected topics.

42.3.1 The IBA Subnet

The smallest complete IBA unit is a subnet, illustrated in
Figure 1. Multiple subnets can be joined by routers (not
shown) to create large IBA networks.

The elements of a subnet, as shown in the figure, are
endnodes, switches, links, and a subnet manager. Endn-
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odes, such as hosts and devices, send messages over links
to other endnodes; the messages are routed by switches.
Routing is defined, and subnet discovery performed, by the
Subnet Manager. Channel Adapters (CAs) (not shown)
connect endnodes to links. Links may also incorporate re-
timing repeaters, but since these are architecturally invisi-
ble they will not be mentioned further.

42.3.2 Links

IBA links are bidirectional point-to-point communication
channels, and may be either copper and optical fibre. The
signalling rate on all links is 2.5 Gbaud in the 1.0 release;
later releases will undoubtedly be faster. Automatic train-
ing sequences are defined in the architecture that will allow
compatibility with later faster speeds.

The physical links may be used in parallel to achieve
greater bandwidth, as shown in Table 1 below. The differ-
ent link widths are referred to as 1X, 4X, and 12X.

The basic 1X copper link has four wires, comprising a
differential signalling pair for each direction. Similarly, the

1X fibre link has two optical fibres, one for each direction.
Wider widths increase the number of signal paths as
implied. Figure 2 below illustrates the copper and optical
cable plugs for all copper and optical widths There is also a
copper backplane connection allowing dense structures of
modules to be constructed; unfortunately, an illustration of
that which reproduces adequately in black and white were
not available at the time of publication. The 1X size allows
up to six ports on the faceplate of the standard (smallest)
size IBA module.

“Short reach” (multimode) optical fibre links are pro-
vided in all three widths; while distances are not specified
(as explained earlier), it is expected that they will reach
250m for 1X and 125m for 4X and 12X. “Long reach” (sin-
gle mode) fiber is defined in the 1.0 IBA specification only
for 1X widths, with an anticipated reach of up to 10Km.
Other width long reach links may be defined later.

42.3.3 Switches

IBA switches route messages from their source to their des-
tination based on routing tables that are programmed with
forwarding information during initialization and network
modification. The routing tables may be linear, specifying
an output port for each possible destination address up to a
switch-specific limit, indexed by that address; or random,
initialized by giving them {destination, output port} pairs.
The exact format, content, and organization of these tables
in the switch hardware is vendor-specific; all that is defined
is the format of the data sent by the subnet manager to load
them.

Messages are segmented into packets for transmission
on links and through switches. The packet size is such that
after headers are counted, the Maximum Transfer Unit of
data, MTU, may be 256 bytes, 1KB, 2KB, or 4KB. In sys-
tems with mixed MTUs, subnet management provides end-
nodes with the Path MTU appropriate to reach a given
destination. For most communication service types (see
Section 42.3.6, below), segmentation of messages into
packets on transmission and reassembly on receipt are pro-
vided by channel adapters at the endnodes.

Switch size—the number of ports—is vendor-specific,
as is the link width supported. It is anticipated that a wide
variety of switch implementations will be available with
very different capabilities and price points. The maximum
switch size supported is one with 256 ports, and switches
can be cascaded to form large networks.

Switches may also optionally support multicast. Packets
sent to a multicast address (a subset of the available
addresses are dedicated to this) are then replicated in the
switch, sent out multiple ports, as defined by separate mul-
ticast forwarding tables.

Figure  42.1: An InfiniBand Architecture Subnet
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Link Width Bi-Directional
Bandwidth

1X 500 MBytes/second

4X 2 GBytes/second

12X 6 GBytes/second

Table  42.1 Link Widths
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Switches also support multiple virtual lanes through a
mechanism called service levels; this is discussed in the
“selected topics” sections later.

The addressing used by switched (Local Identifiers, or
LIDs) allows 48K endnodes on a single subnet; the remain-
der of the 64K LID address space is reserved for multicast
addresses. Routing between different subnets is done on the
basis of a Global Identifier (GID) 128 bits long, modelled
after IPv6 addresses. This allows for essentially unlimited
expansion capability.

42.3.4 Endnodes

IBA endnodes are the ultimate sources and sinks of com-
munication in IBA. They may be host systems or devices
(network adapters, storage subsystems, etc.). It is also pos-
sible that endnodes will be developed that are bridges to
legacy I/O busses such as PCI, but whether and how that is
done is vendor-specific; it is not part of the InfiniBand
architecture. Note that as a communication service, IBA
makes no distinction between these types; an endnode is
simply an endnode. So all IBA facilities may be used
equally to communicate between hosts and devices; or
between hosts and other hosts like “normal” networking; or
even directly between devices, e.g., direct disk-to-tape
backup without any load imposed on a host.

IBA defines several standard form factors for devices
used as endnodes, illustrated in Figure 3: standard, wide,
tall, and tall wide. The standard form factor is approxi-
mately 20x100x220 mm. Wide doubles the width, tall dou-

bles the height, and tall wide doubles both dimensions.
Power dissipation ratings range from 25W for standard to
100W for tall wide. In addition to link hot plug/unplug,
there are standardized baseboard management functions for
power control.

42.3.5 Channel Adapters

The interface between an endnode and a link is a Channel
Adapter (CA). Host CAs (HCA) differ from the CA for a
device (called a Target CA, TCA) in that the HCA has a
collection of features that are defined to be available to host

Figure  42.2: Physical Plugs and Connectors (not to same scale)
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programs, defined by verbs; a TCA has no defined software
interface.

The position of an HCA in a host system is vendor-spe-
cific. It is expected that initial implementations will provide
HCAs as cards attached to a standard I/O bus in order to
quickly provide platforms for software development and
evaluation. Ultimately, however, HCA implementations
will undoubtedly attach directly to, or become a part of, the
host memory control subsystem and partly or completely
replace current I/O busses.

CAs source the several communication service types of
IBA, using queues to hold requests for work to be done and
completions, as discussed in a later section. HCAs also
contain a specific memory model, discussed in the
“selected topics” sections later.

42.3.6 Communication Service Types

IBA provides several different types of communication ser-
vices between endnodes:

• Reliable Connection (RC): a connection is established
between endnodes, and messages are reliably sent be-
tween them. This is optional for TCAs (devices), but
mandatory for HCAs (hosts).

• (Unreliable) Datagram (UD): a single packet message
can be sent to an endnode without first establishing a
connection; transmission is not guaranteed.

• Unreliable Connection (UC): a connection is estab-
lished between endnodes, and messages are sent, but
transmission is not guaranteed. This is optional.

• Reliable Datagram (RD): a single packet message can
be reliably sent to any endnode without a one-to-one
connection. This is optional.

• Raw IPv6 Datagram & Raw Ethertype Datagram (op-
tional) (Raw): single-packet unreliable datagram ser-
vice with all but local transport header information
stripped off; this allows packets using non-IBA trans-
port layers to traverse an IBA network, e.g., for use by
routers and network interfaces to transfer packets to
other media with minimal modification. It will not be
further discussed in this article.

In the above, “reliably send” means the data is, barring
catastrophic failure, guaranteed to arrive in order, checked
for correctness, with its receipt acknowledged. Each
packet, even those for unreliable datagrams, contains two
separate CRCs, one covering data that cannot change (Con-
stant CRC) and one that must be recomputed (V-CRC)
since it covers data that change; such change can occur
only when a packet moves from one IBA subnet to another,
however.

The classes of service above, with the exception of the
oxymoronic Reliable Datagram class and the Raw classes,
are strongly reminiscent of similarly-named networking

communication services, such as those provided by IP. This
is intentional, since they provide essentially the same ser-
vices. However, these are designed for hardware implemen-
tation, as required by a high-performance I/O system. In
addition, the host-side functions have been designed to
allow all service types to be used completely in user mode,
without necessarily using any operating system services;
and without any required copying of data (“zero copy”).

The RC, UC, and RD classes also support remote DMA
(RDMA)1: moving data directly into or out of the memory
of an endnode. This and user mode operation implies that
virtual addressing must be supported by the channel adapt-
ers, since real addresses are unavailable in user mode. The
memory mapping paradigms used by IBA are discussed in
the “selected topics” sections later.

In addition to RDMA, the reliable communication
classes also optionally support atomic operations directly
against endnode’s memory. The atomic operations sup-
ported are Fetch-and-Add and Compare-and-Swap, both on
64-bit data. Atomics are effectively a variation on RDMA:
a combined write and read RDMA, carrying the data
involved as immediate data. Two different levels of atomic-
ity are optionally supported: atomic with respect to other
operations on a target CA; and atomic with respect to all
memory operation of the target host and all CAs on that
host.

The seemingly oxymoronic Reliable Datagram service
is discussed in the “selected topics” sections later.

42.3.7 Queue Pairs and CA Operation

For all the service types, CAs communicate using Work
Queues of three types: Send, Receive, and Completion.
Send and Receive Queues are always used as Queue Pairs
(QPs), as illustrated in Figure 4. The architecture is similar
to that of the VI Architecture [3], but contains a number of
extensions. A particular QP in a CA is the destination or
source of all messages: Connected services connect QPs,
and unconnected services target QPs on other CAs, specify-
ing a QP number along with the Local Identifier (LID) of
the CA port they target. The type of service used and QP’s
size, the maximum number of requests that can be queued,
are specified when a QP is created.

Each QP also has an associated port, also specified when
the QP is created; this is an abstraction of the connection of
a CA to a link. CAs may have multiple ports, as also illus-
trated.

The number of QPs is at least three: Two for manage-
ment (described later), and one for operation. The smallest
maximum size of a QP (number of queued requests) is ven-

1.UC supports only RDMA write operations; the others
support both write and read.
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dor-specific; Profile A sets the minimum of 16 entries, and
Profile B sets a minimum of 128 for send and 256 for
receive.

For HCAs, verbs define how software places work on
queues for processing. The overall flow is illustrated in Fig-
ure 5: Work is placed on a send or receive queue, is pro-
cessed by HCA hardware and consumed, and when

processing is completed an entry is optionally placed on a
completion queue associated with the work queue. The user
may request that a completion notification routine be
invoked when a new entry is added to a completion queue.
The format of an actual Work Queue Entry is vendor-spe-
cific; the verbs specify how abstract Work Requests are
placed on queues.

The types of WRs supported are:

• send and receive a message of the type supported by
the QP

• perform a remote direct memory access (RDMA) op-
eration

• bind a memory window (described later)

• atomic operation (optional).

Send, receive, and RDMA operations may also specify a
gather/scatter list of data segments in user space to be sent
or received into. The maximum number of entries available
is vendor-specific; Profile A has a minimum of 3 for most
cases, and Profile B has a minimum of 8.

42.3.8 Subnet Management

IBA management is defined in terms of managers and
agents. Managers are active entities; agents are passive
entities that respond to messages from managers. The only
exception to agent passivity is that they may optionally
emit traps targeting managers.

Every IBA subnet must contain a single master subnet
manager., residing on an endnode or a switch. It discovers
and initializes the network, assigning Local IDs (LIDs) to
all elements, determining path MTUs, and loading the
switch routing tables that determine the paths from endn-
ode to endnode. The master subnet manager does this by
communicating with Subnet Management Agents that must
exist on all nodes; they respond with information about the
node, such as whether it is a switch or a CA, whether it can
be a manager, if so what it’s priority is, etc. The subnet
management agent is also in charge of receiving settings
from the master manager such as a node’s LID, the location
of the master subnet manager, where to send traps, etc.

Following initialization, the master subnet manager pro-
vides information to endnodes on request through a closely
related entity referred to as Subnet Administration (SA);
this is effectively an “agent personality” of the master sub-
net manager. For example, SA is the source of information
to an OS that informs it at boot time about what devices it
may access; or provides detailed path information when
connecting to another endnode, such as the path MTU,
LID, available service levels, etc. The master subnet man-

Figure  42.4: Queue Pairs, Ports, and their Use
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Figure  42.5: Work Request Processing
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ager also regularly scans the subnet to detect additions (hot
plug) or deletions (hot unplug); optionally, traps can be
provided that inform the subnet manager of this without
explicit scanning.

These functions have been referred to as performed by
the master subnet manager because additional standby sub-
net managers may also be present on the network for higher
availability. These will typically perform some form of
polling to ensure the master is operational, and failover to
one of them when it is not. The details of this during nor-

mal operation are vendor specific; failing over between
subnet managers from different vendors is in general not
supported, since subnet management is strongly tied to
routing and routing is vendor specific.

During subnet initialization, however, a specific polling
algorithm is used, along with a specified initialization state
machine, illustrated in Figure 6. This is necessary for endn-
odes (hosts, particularly) from different vendors to cor-
rectly collaborate on choosing a unique single master with
the highest priority.

The operation of the initialization state machine is as
follows: Initially any node that can be a subnet manager
enters the state machine at the “discovering” state and
begins scanning the network. Once it discovers another
subnet-management-enabled node of highest priority, or
one already elected master, it goes into the standby state
where it polls the master. Should the master fail to respond
to a poll, it goes back to discovery. If no other node has
higher priority, it has been elected master, enters the master
state, and begins initializing the subnet. Unneeded standby
managers can be put in a not-active state, where they cease
to poll the master, using a command message (such mes-
sages are indicated in capital letters in the diagram). A mas-
ter must, as mentioned, regularly scan the network; if it
discovers a standby manager with a higher priority, it ini-
tiates a hand over of mastership with the handover mes-
sage, which is acknowledged.

The protocol implemented by this state machine has
been formally verified using an automated protocol verifi-

cation system at IBM’s Research Laboratory in Haifa,
Israel.

IBA also defines several other managers, e.g.:
• Baseboard management, which controls power, LED

settings, etc., of managed IBA modules.
• Performance management, which provides means for

sampling a variety of required and optional perfor-
mance counters. All endnodes and switches must have
counters for octets received and transmitted, packets
received and transmitted, and wait states. A variety of
optional values to count are also defined including
queue depth, octets and packets send/received per vir-
tual lane, packets discarded, etc.

All management is performed in-band, using Manage-
ment Datagrams (MADs). MADs specifically use least-
common-denominator communication: They are unreli-
able datagrams with 256 bytes of data (minimum MTU).
Their format, and the actions taken on receipt, are all speci-
fied in detail.
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Figure  42.6: Subnet Management Initialization State Machine
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MADs specifically for subnet management, a subset of
MADs called SMPs (Subnet Management Packets), are
unique in several ways: They are the only packets allowed
on virtual lane 15 (VL15); they are always sent and
received on Queue Pair 0 of each port; and they can use
directed routing. Directed routing is sometimes referred to
in other areas a source routing. When using it, the SMP
explicitly indicates which port it exits from when going
from switch to switch; when using normal, LID (destina-
tion), routing, just the destination address is provided and
the switch chooses the port using its routing tables.
Directed routing is needed because, clearly, LID routing
cannot be used before the routing tables are initialized.

MADs for other management purposes, referred to as
General Service Packets (GSPs), travel on any VL except
15 and can be sourced from any QP. A node’s agents, how-
ever, are always found by sending a message to QP1, which
is reserved for this function. Having been found there, they
can be redirected to another QP, or even another node, by
providing a redirection response to any GSP. (Hence QP0
and QP1 are the two special QPs for management men-
tioned earlier that must always be present.)

42.4 Selected Topics

Now that the general outline of IBA has been covered, a
few topics of particular interest will be described further:
addressing of elements on the network, packet formats
used, the memory model used to access host memory, parti-
tioning, reliable datagram, and virtual lanes and service
levels. Those descriptions follow.

42.4.1 Addressing

Three types of quantities are important to IBA addressing:
LIDs, GUIDs, and GIDs.

• LIDs, Local IDentifiers, are subnet-unique 16-bit
identifiers used within a network by switches for rout-
ing.

• GUIDs, Global Unique IDs, are 64-bit EUI-64 IEEE-
defined identifiers for elements in a subnet.

• GIDs, Global IDs, are 128-bit global identifiers used
for routing across subnets.

LIDs are assigned by the Subnet Manager to each port
on an endnode and to each switch (switch ports are not
assigned LIDs). Destination and source LIDs (DLIDs and
SLIDs) are carried by each packet in its local routing
header. The space of LIDS is divided into:

• preassigned values: there is exactly one of these, the
“permissive LID” accepted by any destination; it is
used only as a destination in directed route manage-

ment packets so endnodes can be probed by the subnet
manager before LIDs are assigned.

• unicast values: approximately 48K entries in the en-
tire LID range. These map to a single destination.

• multicast values: the remaining approximately 16K
entries in the LID range. These map to multiple desti-
nations; a port may be the target of zero, 1, or more
multicast LIDs.

For additional throughput and high availability, multiple
paths through a subnet to the same port are required. These
are provided by a feature of each port called the LID Mask
Count (LMC), which indicates how many low-order bits of
a LID are “don’t cares” in routing to that port; sequential
values within an LMC range must be assigned by the sub-
net manager, which may then program the switch routing
tables to cause each of the LIDs in an LMC-defined range
to take a different path, or paths with different qualities
such as MTU, to the destination port. The LMC can have a
value from 0 to 3, accommodating up to 128 paths to a port.
It is possible that some vendors may also use the LMC
mechanism to provide addressing to different partitions
(also called Dynamic Domains, or LPARs (Logical Parti-
tions)) of a host or I/O device, but this use is not specified
by the InfiniBand Architecture.

GUIDs are global scope IEEE EUI-64 identifiers
assigned to a device, created by concatenating 24-bit
company_id, ass igned by the IEEE Regis t ra t ion
Authority [4], to a 40-bit extension identifier. Companies
assign GUIDs to chassis, channel adapter (CA), switch, CA
port, and router port. The SM may assign additional local-
scope EUI-64s to a CA port or a router port.

GIDs are 128-bit identifiers used to identify an endnode
port, switch, or multicast group. They are valid IPv6 identi-
fiers with restrictions (see chapter 4 of [1] for details).
GIDs are independent of LIDs, so they are immune to sub-
net reconfiguration.

GIDs are constructed by prepending a 64-bit GID prefix
onto a GUID, as shown in Figure 7 below. The GID prefix
has a detailed format (see chapter 4 of [1]) including a 16-
bit subnet prefix as its low order 16 bits.)

Unicast GIDs can be created by:

[1]Concatenating of the default GID prefix (0xFE80::0)
and an EUI-64 identifier. Packets with a destination
using this form are never forwarded by a router, i.e. it
has a local subnet scope.

2. Concatenating an SM assigned subnet prefix with the
manufacturer’s assigned EUI-64 identifier.

64-bit GID Prefix EUI-64

Figure  42.7: GID Format
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3. Assignment of a GID by the subnet manager. The
subnet manager creates a GID by concatenating the
subnet prefix with a set of locally assigned EUI-64
values (at GID infdex 1 or above). This allows for
well-known assigned identifiers for services.

All CA and router ports and switches must be assigned
at least one unicast GID using either of the first two meth-
ods. CA and router ports may also be assigned additional
unicast GIDs using the third method.

Multicast GIDs are distinguished by having their eight
initial bits be 11111111. Those are followed by a set of four
flag bits, the first three of which are reserved and must be 0.
The fourth bit equalling 0 indicates that this is a perma-
nently assigned (e.g., well-known) IPv6 address, which
must be constructed according to RFC 2373 and RFC 2375.

If the fourth bit is 1, it indicates that this is a transient mul-
ticast address.

42.4.2 Packet Formats

Several examples of IBA packets are illustrated in Figure 8.
There are packets that use IBA transport for local (intra-
subnet) or for local (inter-subnet) traffic; and provision for
“raw” packets that don’t use the IBA transport layer for
both of those cases. The raw format is intended to simplify
processing in routers that do not target other IBA subnets,
allowing hosts to directly provide them with packets
already in the format needed. Which of those four formats
is present in a packet is indicated by the Link Next Header
(LNH) field in the initial Local Routing Header that is
always present, as discussed below.

The complete format of IBA Packets is shown in Figure
9, with field sizes. Fields that are optional or may not be
present are indicated by dashed lines (the Base Transport
Header is not optional when IBA transport is used). The
intimate details of all the bits in the headers can be found in
the specification [1]. The general purpose and approximate
contents of the fields (not all elements are described) are:

• Local Routing Header (LRH): This is used by switch-
es to move a packet across a subnet to its destination
endnode network port. It contains the source and des-
tination LIDs, link protocol version ID, service level
(see Section 42.4.6), virtual lane, packet length, and a
“next header” field used to indicate which optional
fields are present.

Local (within a subnet) Packets
Local Routing

Header
IBA Transport

Header
Packet Payload Variant

CRC
Invariant

CRC

Global (routing between subnets) Packets
Local Routing

Header
IBA Transport

Header
Packet Payload Variant

CRC
Invariant

CRC
Global Routing

Header

Raw Packet with Raw Header
Local Routing

Header
Packet Payload Variant

CRC

Raw Packet with Global Header
Local Routing

Header
Other Trans-
port Header

Packet Payload Variant
CRC

Global Routing
Header

Raw
Header

Other Trans-
port Header

Figure  42.8: IBA Packet Format Examples
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Global Routing
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Base Trans-
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Extended Trans-
port Header(s)

Message
Payload

Invariant
CRC

Variant
CRC

Immedi-
ate Data

Figure  42.9: Complete IBA Packet Format
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• Global Routing Header (GRH): This is used by rout-
ers to move packets between subnets. In addition to
source and destination GIDs and global routing ver-
sion ID, it contains payload length, IP version, traffic
class, and hop limit. The LRH of a globally routed
packet moves it to a router, which uses the GRH to de-
termine where it goes; the destination router con-
structs a new LRH to move the packet to its
destination port over the target subnet.

• Base Transport Header (BTH): This tells endnodes
what to do with packets. In addition to yet another ver-
sion ID, it has an opcode, destination Queue Pair,
packet sequence number for reliable transports, parti-
tion key (see Section 42.4.4) and a number of other
fields. Whether extended headers are present and
what kind they are is indicated by the opcode.

• Extended Transport Header (ETH): This holds addi-
tional information depending on the BTH operation or
LRH next header. For example, for RDMA operations
it has a virtual address, length, and R_Key (see Sec-
tion 42.4.3); for atomic operations, it has an opcode,
virtual address, data to be swapped or compared, and
an R_Key again; for ACKnowledgement packets it
contains a syndrome and a sequence number; etc.

• Message Payload: This is the point of the whole exer-
cise in most cases.

• Invariant CRC: This is a CRC over all the fields of the
packet that cannot change in transit. It is not present in
raw packets.

• Variant CRC: This is a CRC over all fields of the
packet, including the Invariant CRC. It is present be-
cause, for example, the LRH must be replaced in glo-
bally routed packets.

42.4.3 Memory Model

Control of memory access by and through an HCA is pro-
vided by three primary objects: memory regions, memory
windows, and protection domains. The relationship
between regions, windows, and the underlying virtual
memory system is illustrated in Figure 10 and explained
below.

Memory regions provide the basic mapping required to
operate with virtual addresses. A memory region is created
by a verb that registers a segment of memory with the
HCA. Doing so causes the operating system to provide the
HCA with the virtual-to-physical mapping of that region
and pin the memory (prohibit swapping it out in virtual
memory operations). Registration creates an object called
an L_Key, which must be used with each access to that
memory region; it authenticates the use of that region by a

QP, and specifies access rights. If remote access to memory
by another endnode is desired for RDMA, a different object
called an R_Key must be created and used; it must be sent
to the endnode performing the memory access, and then
passed back to the local endnode by the remote one as part
of an RDMA request. It is an opaque object that indicates
to the HCA which virtual address map to use, and authenti-
cates the requestor.

Memory registration is necessarily a time-consuming
operation; it is likely to be done just once for large seg-
ments of memory at a time, probably with a granularity of
an operating system page (the actual granularity is vendor
specific). Finer-grain and much lower overhead protection
is provided by memory windows, so that individual opera-
tions can be restricted to refer only to the specific data they
should access.

A memory window is created by a verb within an
already-registered region; it specifies a contiguous virtual
memory segment with byte granularity. The bounds of a
window’s segment of memory are re-registered using a
work request. When that is done, subsequent work requests
on that work queue must adhere to the memory bounds
specified by the window.

Protection domains effectively glue QPs to memory
regions and windows. They are opaque objects, but are
expected to correspond roughly to operating system pro-
cesses or groups of process which for example, might share
a memory segment. A protection domain is created first,
and then used when creating a QP, region or window. When
applying or using a window or region, it the protection
domain of the window (region) and the QP using it must
match, or an error is reported.

Page 0

Page 2

Page 1

Page 3Window

Region

Registered
Virtual

Address
Space

Consumer
Managed

OS
Managed

Figure  42.10: Window - Region - VM Relationship
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42.4.4 Partitioning

An IBA system is intended to be used as a shared fabric
to which multiple host systems and their I/O are attached.

Ultimately, it is intended that an IBA fabric be able to be
the only I/O fabric for all of those hosts. This poses a sig-
nificant problem. To see it, first consider how clustered sys-
tems are typically constructed today.

This is shown in Figure 11. Typically there are multiple
hosts, each with its own I/O bus, to which is attached adapt-
ers for private storage, communication adapters connecting
the hosts through some fabric, and perhaps adapters that
allow direct connection to shared storage devices (although
many do not have that). The shared storage devices, if they
exist, are known to be shared and are typically programmed

in a special way within the hosts, using lock messages
passed between the hosts across the fabric or other coordi-
nation.

Now, consider what would happen if you took the sys-
tem of Figure 11 and made the change illustrated in Figure
12 below.

Without massive changes to the operating system run-
ning on the hosts, and possibly to firmware also, merging
the I/O busses into one will create a system that will not
run. When the operating systems on each host do their
usual “bus walk” to discover devices, they will both see all
the adapters, including those that logically should be pri-
vate to each of them—and each will think all the adapters
are their own private property, accessing them without any
synchronization with the other host. This simply does not
work.

However, as presented so far, that is exactly the situation
created when a single IBA subnet has more than one host
attached. It is effectively what is shown in Figure 13, since
InfiniBand is the I/O “bus.”

A mechanism must be put in place that gives host sys-
tems enforceable, private access to private devices, and
allows shared resources to be controllably shared. That is
partitioning. Applying it to the system of Figure 13 might,
for example, produce a situation like that shown in Figure
14: There is a collection of endnodes that is private to A,
another that is private to B, a third that is shared by both A
and B (the shared disks), and finally, since the IBA fabric is
also the communication medium between the hosts, a
fourth that lets each host know the other exists so they can
communicate. Host A should not even know that the
devices private to Host B exist.

This is accomplished in IBA by the use of Partition Keys
(P_Keys) and Partition Key Tables (P_Key Tables). Every
endnode must have a P_Key Table. Furthermore, every QP

Host A

adapter adapter

IO Bus
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adapter

2A

Host B
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IO Bus

2B1B
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Figure  42.11: Typical Cluster Organization Today
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has associated with it an index into that table. Whenever a
packet is sent from the QP’s send queue, the indexed
P_Key is attached; whenever a packet is received on the
QP’s receive queue, the indexed P_Key is compared with
that of the incoming packet. If it does not match, the packet
is silently discarded: The receiving CA does not know it
arrived, and the sending CA gets no acknowledgement,
negative or otherwise. From the sending side, it is as if it
sent a packet to a nonexistent device; it was just lost. This is
illustrated in Figure 15. One difference from literally send-
ing a packet to a nonexistent device is that mismatches are
recorded, and optionally a trap sent to the subnet manager

indicating that a packet was sent somewhere it did not
belong.

The security of partitioning is provided by the fact that
there is deliberately no verb interface defined that allows a
host to alter the contents of its own P_Key Table. All it can
do is specify the index into the P_Key Table that a QP must
use. A secure implementation of an IBA HCA will ensure
that there is no hardware allowing the host to alter the
P_Key Table, but that is up to the implementation.

The content of the P_Key table is instead loaded by
SMPs: Management datagrams sourced from the master
subnet manager. This loading is authenticated by a 64-bit
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Figure  42.13: IBA Fabric as a Shared I/O Bus
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management key that all SMPs may1 use, and must be
matched at the recipient for the SMP to be processed.
Thanks to this, and the inability of hosts to modify the
P_Key table, the P_Keys themselves can be relative short
(16 bits) and passed around from program to program in the
clear, even in user mode. Setup of the partitions is a func-
tion of the subnet manager called partition management; it
is done in response to customer-administrator input speci-
fying how he/she wishes to configure his/her system.

IBA partitioning has an additional feature that is
believed to be extremely useful: Partial partition member-
ship. The high-order bit of each P_Key is reserved to indi-
cate whether membership is full (0) or partial (1). If a
partial membership P_Key arrives at a QP which itself has
only partial membership, otherwise matching, the packet is
rejected. Any combination other than partial-partial is
accepted. What this allows is the creation of “server”
resources (devices, hosts) in which the server is known,
meaning in the partitions of, many clients; but all of the cli-
ents remain ignorant of each others’ existent. To make that
happen, the server has full membership, and the clients par-
tial membership, in some designated server partition.

In practice, initial versions of InfiniBand will tend to
confuse the situation with partitioning because, as men-
tioned earlier, they will implement HCAs as cards that plug
into a standard I/O bus. Clusters using this will look exactly
like Figure 11—a conventional cluster—perhaps with
shared storage attached to the IBA fabric rather than a sepa-
rate medium. Since the devices in this arrangement are, in
effect, physically partitioned, little of IBA’s partitioning
function is necessary. However, as higher performance
implementations that connect more directly to host memory
systems are deployed, the partitioning functions described
here will become a necessity.

42.4.5 Reliable Datagrams

Reliable datagrams are a solution to an otherwise difficult
scaling problem that occurs when creating parallel pro-
grams that run across multiple systems, each with multiple
processors.

Each of the N systems on which such a parallel program
runs must communicate with every other one of those sys-
tems, and that communication must be reliable or else sig-
nificant overhead must result from inducing reliability from
the unreliable communication. This is usually conceptual-
ized with a diagram such as Figure 16 below: Each system
has N-1 QPs, one for communication with each other sys-
tem. For IBA, this would typically be done with RC (Reli-
able Connected) service on each QP.

Unfortunately, if each of the endnodes is a multiproces-
sor, this actually does not represent the situation. Instead,
each node hosts M processes. Communication within the
node is usually accomplished by other means, such as
shared memory. But across nodes, each of the M processes
must communicate with each of the M processes on the
other nodes. Thus each process on each node requires
M*(N-1) queue pairs, as illustrated in Figure 17 below.
Since each process requires that many QPs, and each node
holds M processes, there are (N-1)*M2 QPs required per
node. This does not scale.

For example, parallel database systems are one impor-
tant example of parallel programs of this type. For a typi-
cal , by no means largest , multiprocessor with 16
processors, a parallel database will typically have several
hundred to a thousand processes on each node. With 1,000
processes per node, a mere four node system would require
four million QPs per node. This is obviously an untenable
result.

There are two possibilities that can be used to fix this,
neither satisfactory:

• Create a separate communication process on each
node, and multiplex all communication to and from
that node through that process. This works, and is in
fact what commercial databases often do today. Un-
fortunately, it involves significant overhead in the
communication process, which must both send and re-
ceive data, perform scheduling of communication,
and generally become fairly complex.

• Use an unreliable datagram transport. This allows just
one QP to be used for each sending process, since the1.It is possible to turn off SM Key checking as an option.

P
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Figure  42.16: Usual Parallel Communication Assumed
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same QP can target any QP in any node and thus target
any process. Unfortunately, this is unreliable trans-
port, and the overhead of inducing reliability may be
even larger than the overhead of the communication
process of the other alternative.

In the development of InfiniBand, something was real-
ized: The problem isn’t the QPs as such. The problem is
that the reliability context is tied to the QP. The reliability
context is the collection of state information that is used to
provide a reliable connection, such as sequence counters,
retry counters, etc.

The reliable datagram (RD) transport service breaks that
connection. It instead places the reliability context in a sep-
arate entity, called the End-to-End context (EE context),
and allocates one of those for each node (not process) being
communicated with. Each RD message then specifies,
along with its data and other possible parameters, an EE
context (implicitly indicating the target node); and the tar-
get QP on the target node. When that message is processed
by the CA, it uses the reliability context in the specified EE
context, not in the QP as would be done for RC service.

The result is illustrated in Figure 18 below, which shows
each QP effectively communicating through an EE context
to any of the other nodes of the system. Hardware-provided
reliability in communication is attained, and the cost is M
QPs plus N EE contexts per node, which scales nicely with
both the number of nodes and the number of processes.

It is, however, the case that before beginning communi-
cation with any specific node, an EE context must be cre-
ated for that node. This is a kind of initial connection
setup—per node, not per QP—and so “reliable datagram”
in some sense lacks the complete connectionless character-
istics of the usual (unreliable) datagram service. It could
justifiably have been called “multiconnected” service
instead.

42.4.6 Virtual Lanes and Service Levels

IBA switches support a minimum of two, and a maximum
of 16 virtual lanes (VLs). They are intended to be used for
traffic prioritization, deadlock avoidance, and segregation
of traffic classes. The required two are VL15, used exclu-
sively for subnet management traffic; and VL0, used for
normal data traffic.

Each virtual lane must be an independent resource for
flow control purposes. When more than two lanes are
implemented, the priorities of the data lanes are defined by
VL arbitration tables, of which there are two: High priority,
and low priority; a Limit of High Priority value specifies
the maximum number of high priority packets that can be

sent before a low priority packet is sent. The arbitration
tables implement weighted round-robin arbitration within
each priority level. Up to 64 table entries are cycled
through, each specifying a VL and the number of packets
(0 to 255) to be sent from that VL.
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Figure  42.18: Use of Reliable Datagram

© IBTA

Figure  42.19: Operation of Virtual Lanes and SL-to-VL Mapping
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Since systems can be constructed with switches support-
ing different numbers of VLs, messages are actually
marked with a more abstract Service Level (SL), and SL-
to-VL mapping tables are used. This allows messages to be
routed from a switch with many VLs, through one with few
VLs, and back into another with many VLs without losing
track of which VL should be used at any point.

SL-to-VL mapping, and arbitration of multiple data
VLs, must also appear in the endnode Channel Adapters
that connect to links.

The operation of VLs across a link is illustrated in Fig-
ure 19; note that the number of VLs in the receiving switch
(or CA) is deliberately illustrated as larger than the number
in the sender. The sender’s VLs will, of course, determine
the traffic pattern across the link.

42.4.7 Path Migration

If the levels of availability now required of servers are to be
provided in IBA, methods of avoiding failures in the fabric
must be provided. IBA provides two of these: Automatic
Path Migration, and Send Queue Drain. Both are aimed at
restoring or altering network operations without disrupting
existing connections between QPs and, in the case of Send
Queue Drain, EE contexts.

Automatic Path Migration is a fast hardware failover
mechanism that can be used to bypass a large class of fail-
ures. It is optional. It provides for associating with a QP
two independent paths to the destination, created when a
connection is initially created with a QP on another endn-
ode. QPs so initialized are initially placed in an “armed”
state, in which packets flow across the first path normally.
If the first path suffers errors and one side exhausts its
retries, rather than producing an event indicating failure it
switches to the other path. Packets sent on the other path
contain a trigger bit in the BTH which, when received on
the other side, cause it to also flip to the other path for send-
ing its packets. When both sides have flipped, they are in a
“migrated” state, and after repair can be changed by soft-
ware to a “rearm” state to enable operation on the original
path again.

Send Queue Drain is an enabler for software-driven
recovery actions, and is applicable both to unplanned fail-
ures and to avoidance of planned outages. It is not optional.
It allows software to put a QP into the “Send Queue Drain”
state, in which it continues receiving packets normally, but
after completing current send queue operations does not
initiate any new ones. When both sides of a connection
have drained their queues, meaning there are no possible
acknowledgements left outstanding, the connection is qui-
escent and the state of the QPs is maintained statically. At
this point, software can make modifications to the QPs and
to the network, and when finished restart QP operation

where it left off. This operation is particularly useful when
changes need to be made that must in effect be atomic to
QP operation, such as changing LID addresses of endnodes
or changing P_Keys. Such operations may be necessary
when, for example, it is necessary to join two subnets that
have been operating independently and so have overlapping
LID assignments.

42.5 Industry Implications and Conclusions

A question that is regularly asked about InfiniBand Archi-
tecture in general is “Why do we need yet another network
architecture? Why not use Ethernet and IP?” These are,
indeed, pervasive, familiar to an enormous number of peo-
ple, and generally incumbent. The extension of Ethernet to
10Gbit/second speeds satisfies nearly all requirements, and
with developments like Network-Attached storage and
SCSI over IP (iSCSI), it is being extended into device
attachment areas that appear to compete directly with IBA.
These technologies are here now, being developed, and will
be developed further in the years it will take InfiniBand to
build its market presence.

This is an issue that will ultimately be answered in the
market, and indeed it cannot be said that InfiniBand Archi-
tecture will be the “winner” with 100% certainty within its
domain of server communication; certainly Ethernet and IP
will continue to dominate areas that IBA does not address,
such as connection to clients. However, there are two rea-
sons why Ethernet and IP very well may not adequately
address server I/O and communication requirements.

The first is IP software overhead. Serious commercial
and technical server I/O cannot afford the software over-
head associated with IP stacks. To be successful in this
area, the majority of the processing will have to be off-
loaded. This is difficult. Partial offload of IP processing,
such as checksum generation and gathering of data, has
been done successfully for quite a while, but near complete
offload has, while often attempted, never yet been commer-
cially successful. Rather than shuffling the processing to
another place, IBA eliminates it. Furthermore, to compete
with IBA efficiency, the offloading performed must, in
effect, re-invent some of the capabilities of IBA like such as
zero-copy data transmission and user mode operation. This
is more than just offloading processing. In addition, if IBA
is the I/O system (as seems likely), connection to Ethernet
NICs must be through IBA. It’s obviously impossible for
that to be more efficient than just using IBA as the native
connection.

The second is simple presence. If IBA comes out of all
the systems of interest in a native fashion, as the collection
of steering committee and sponsor members of IBTA
would suggest; and IB switches reach the cost per port of
comparable function Ethernet switches (a volume issue
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more than anything); then there is simply no reason not to
use IBA. It is already there, with nothing else required to
use it.

Assuming that IBA is successful, there are three very
important things it will provide to the industry:

1. It will be a standard, high-volume enterprise-class
server fabric, providing the reliability, availability,
serviceability, manageability, performance, and scal-
ability that implies. Such capabilities have heretofore
only been available in proprietary systems. The mar-
ket in this area will deepen and broaden, with signifi-
cantly better facilities available to many customers at
lower prices.

2. It will, for the first time, provide non-proprietary low-
overhead inter-host communication. (VI Architec-
ture, since it lacks hardware standardization, does
only half that job.) This will enable functions in
“open” systems that are now available only on propri-
etary systems such as Compaq (Tandem) Himalaya
and IBM Parallel Sysplex. This will result in new
cluster multi-tier server solutions/markets that have
previously been impossible, such as high-function
storage subsystems at commodity storage prices.

3. It will allow complete separation of I/O devices from
processing elements. This, along with the standard-
ized backplane wiring of IBA, will enable new form
factors with much higher density of packaging than is

now possible. It will also encourage new ways of
looking at systems as a whole, e.g., data-centric
views where the processing is considered peripheral
to the data, which is central.

Separately, each of those three elements would be a very
significant factor that could change the landscape of com-
puting in the large. Together, they may well presage the
widespread adoption of new, previously untried hardware
and software structures for server computing.
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