PMI: A Scalable Process-
Management Interface for
Extreme-Scale Systems

Pavan Balaji, Darius Buntinas, David Goodell, William
Gropp, Jayesh Krishna, Ewing Lusk and Rajeev Thakur

§ e N U.S. DEPARTMENT OF
.2 ENERGY



Introduction

" Process management is integral part of HPC
= Scalability and performance are critical

" Close interaction between process management
and parallel library (e.g., MPI) is important

— Need not be integrated

= Separation allows
— Independent development and improvement

— Parallel libraries portable to different
environments




PMI

" Generic process management interface for
parallel applications

= PMI-1 is widely used
— MVAPICH, Intel MPI, Microsoft MPI
— SLURM, OSC mpiexec, OSU mpirun
" |ntroducing PMI-2
— Improved scalability
— Better interaction with hybrid MPl+threads




PMI Functionality

" Process management
— Launch and monitoring
e |nitial job
e Dynamic processes
— Process control
" Information exchange
— Contact information
— Environmental attributes



System Model



System Model

MP Microsoft
Library MPICHZJ MVAPICHZJ InteI-I\/IPIJ SCX—MPIJ MP] J
PMI AP| == e o - - e e e
PMI Simple SLURM SMPD
Library PMI PMI J PMI J BG/L PMIJ

Communication
Subsystem

o

Hydra J MPD J SLURMJ SMPD J

OSC J OSuU
mpiexec / mpirun

J

Process Manager
o

6



Process Manager

" Handles
— Process launch
e Start and stop processes
e Forwarding 1/0 and signals
— Information exchange

e Contact information to set up
communication

" Implementation
— May be separate components
— May be distributed

= E.g., PBS, Sun Grid Engine, SSH



PMI Library

" Provides interface between parallel library and
process manager

" Can be system specific
— E.g, BG/L uses system specific features
= Wire protocol between PMI library and PM
— PMI-1 and PMI-2 have specified wire protocols
— Allows PMI lib to be used with different PM
— Note: wire protocol and PMI API are separate
entities
e PMI implementation need not have wire
protocol



PMI API

= PMI-1 and PMI-2
" Functions associated with
— Initialization and finalization
e Init, Finalize, Abort
— Information exchange
e Put, Get, Fence
— Process creation
e Spawn



Information Exchange

Processes need to exchange connection info
PMI uses a Key-Value database (KVS)

At init, processes Put contact information
—E.g., IP address and port

Processes Get contact info when establishing
connections

Collective Fence operation to allow
optimizations



Connection Data Exchange
Example

= Atinit
— Proc O Puts (key=“bc-p0”, value=“192.168.10.20;3893")
— Proc 1 Puts (key=“bc-p1”, value=“192.168.10.32;2897")
— Proc 0 and 1 call Fence
e PM can collectively distribute database
= |ater Proc 0 wants to send a message to Proc 1
— Proc O does a Get of key “bc-p1”
e Receives value “192.168.10.32;2897”
— Proc O can now connect to Proc 1

11



Implementation Considerations

= Allow the use of “native” process manager with
low overhead

— Systems often have existing PM
eE.g., integrated with resource manager
— Minimize async processing and interrupts
= Scalable data exchange
— Distributed process manager

— Collective Fence provides opportunity for
scalable collective exchange



Second Generation PMI



New PMI-2 Features

= Attribute query functionality
= Database scope

* Thread safety

= Dynamic processes

= Fault tolerance



PMI-2 Attribute Query
Functionality

" Process and resource managers have system-
specific information

— Node topology, network topology, etc.

= Without this, processes need to determine
this themselves

— Each process gets each other's contact-info
to discover local processes

— O(p?) queries



PMI-2 Database Scope

= Previously KVS had only global scope
= PMI-2 adds node-level scoping
—E.g., keys for shared memory segments

= Allows for optimized storage and retrieval of
values



PMI-2 Thread Safety

= PMI-1 is not thread safe
— All PMI calls must be serialized
e Wait for request and response
— Can affect multithreaded programs
= PMI-2 adds thread safety
— Multiple threads can call PMI functions

— One call cannot block the completion of
another



PMI-2 Dynamic Processes

" In PMI-1 a separate database is maintained for
each MPI_ COMM _ WORLD (process group)

— Queries are not allowed across databases
— Requires out-of-band exchange of databases
= PMI-2 allows cross-database queries

— Spawned or connected process groups can
now query each other’s databases

— Only process group ids need to be exchanged



PMI-2 Fault Tolerance

= PMI-1 provides no mechanism for respawning
a failed process

— New processes can be spawned, but they
have a unique rank and process group

" Respawn is critical for supporting fault-
tolerance

— Not just for MPI but other programming
models



Evaluation and Analysis



Evaluation and Analysis

= PMI-2 implemented in Hydra process manager
= Evaluation
— System information query performance

— Impact of added PMI functionality over native
PM

— Multithreaded performance



System Information Query

Performance

= PMI-1 provides no attribute query
functionality

— Processes must discover local processes
— O(p?) queries

" PMI-2 has node topology attribute

= Benchmark (5760 cores on SiCortex)
— MPI_Init();MPI1_Finalize();



Process Launch (5760-core SiCortex)

Time (seconds)

5,000
4,500
4,000
3,500
3,000
2,500
2,000
1,500
1,000

500

Launch Time

==PM|-1
===PM|-2

1

4

______|

16 64 256 1K 4K
System Size (cores)

PMI Request Count

1,200

-
o
o
o

800

600

400

Requests (thousands)

200

1 4 16 64 256 1K 4K
System Size (cores)

23



Impact of PMI Functionality

= Systems often have integrated process managers
— Not all provide PMI functionality

" Efficient PMI implementation must make
effective use of native process managers

— Minimizing overhead
= Benchmark (1600 cores on SiCortex)
— Class C BT, EP and SP
— Using SLURM (which provides PMI-1)

— Using Hydra over SLURM (for launch and
management) plus PMI daemon



Runtime Impact of Separate

PMI Daemons (1600 cores SiCortex)
Percentage Variation

Absolute Performance

200
— 180
2 160
S

g 140
< 120

=
()
o

Execution Tim
N B OO O
O O O O O

BT

M SLURM
M Hydra

EP

SP

Variation in Execution Time

6%

5%

4%

3%

2%

1%

0%

BT EP SP

25



Multithreaded Performance

" PMI-1 is not thread safe
— External locking is needed
"= PMI-2 is thread safe
— Multiple threads can communicate with PM
— Hydra: lock only for internal communication
" Benchmark (8-core x86 64 node)

— Multiple threads calling MPI_Publish_name();
MPI_Unpublish _name()

— Work is fixed, number of threads increases



Multithreaded Performance

600
500
400

300

Latency (ps)

200

100

Thread Count



Conclusion



Conclusion

= We presented a generic process management
interface PMI

= PMI-2: second generation eliminates PMI-1
shortcomings

— Scalability issues for multicore systems

— Issues for hybrid MPI-with-threads
— Fault tolerance

" Performance evaluation

— PMI-2 allows better implementations over PMI-1
— Low overhead implementation over existing PM

29



